Day - 1

Introduction to Databricks

- Overview of Databricks: Introduction to the platform and its components.
- Databricks Architecture: Understanding clusters, workspaces, and notebooks.
- Setting up Databricks: Creating and managing clusters.
- Core Features: Overview of notebooks, version control, jobs, and collaboration.

Understanding Apache Spark Basics

- Introduction to Apache Spark: Spark's core components, RDDs, DataFrames, and Spark SQL.
- The Spark DataFrame API: How DataFrames are used for large-scale data processing.
- Spark SQL: Performing queries on large datasets.

Data Engineering with Databricks

- Building Data Pipelines: Techniques for transforming and storing data using Spark.
- Working with Delta Lake: Introduction to Delta Lake for reliable and scalable data storage.
- Data Transformation: Using Spark's DataFrame API for data cleaning and manipulation.

• Hands-on

- Setting up Databricks Workspace: Create a Databricks workspace, manage clusters, and explore Databricks notebooks.
- Running Spark Queries: Perform basic data transformations using Spark SQL and DataFrames.
- O Data Pipeline Creation: Build a simple data pipeline using Databricks, including reading and writing data with Delta Lake.

Machine Learning Fundamentals in Databricks

- o Introduction to MLlib: Using Spark's MLlib for machine learning tasks.
- Creating Machine Learning Models: Data preparation, feature extraction, model training, and evaluation.
- MLflow: Managing machine learning experiments, model tracking, and hyperparameter tuning.

Collaboration in Databricks

- Collaborative Notebooks: Sharing and collaborating on Databricks notebooks.
- Git Integration: Managing version control for notebooks and data science projects.
- Team-based Workflow: Using Databricks for collaborative data engineering and machine learning projects.

Data Visualization in Databricks

- Creating Visualizations: Using built-in tools to visualize data within Databricks notebooks.
- Building Interactive Dashboards: Building dashboards to explore and present data insights.

Hands-on Lab

- Building a Machine Learning Model: Use Spark's MLlib to build and evaluate a simple machine learning model.
- Collaborative Work: Share and collaborate on Databricks notebooks with team members.
- Visualization: Create visualizations based on the data, analyze results, and build an interactive dashboard.