Example PromQL for Prometheus Server
prometheus_http_requests_total
prometheus_http_requests_total{job="prometheus",group="canary"}
prometheus_http_requests_total{environment=~"staging|testing|development",method!="GET"}
prometheus_http_requests_total{job=~".*"} # Bad!
prometheus_http_requests_total{job=~".+"} # Good!
prometheus_http_requests_total{job=~".*",method="get"} # Good!
prometheus_http_requests_total[5m]
prometheus_http_requests_total{job="prometheus",group="canary"}[2h]
prometheus_http_requests_total{environment=~"staging|testing|development",method!="GET"}[60m]
Prometheus PromQL Example Query: node exporter
Metrics specific to the Node Exporter are prefixed with node_ and include metrics like node_cpu_seconds_total and node_exporter_build_info.
Metric | Meaning |
---|---|
rate(node_cpu_seconds_total{mode=”system”}[1m]) | The average amount of CPU time spent in system mode, per second, over the last minute (in seconds) |
node_filesystem_avail_bytes | The filesystem space available to non-root users (in bytes) |
rate(node_network_receive_bytes_total[1m]) | The average network traffic received, per second, over the last minute (in bytes) |
Modern CPUs don't run at one constant frequency.
To save power CPUs can reduce the frequency they run at, which is quite useful for battery based devices like laptops. So while CPU metrics give you the proportion of time in each mode, one second of user time isn't always represent same amount of work as another second of user time. This can be a problem when running benchmarks.
Linux provides information about this under /sys/devices/system/cpu/*/cpufreq/, and on my desktop the node exporter produces:
# HELP node_cpu_frequency_max_hertz Maximum cpu thread frequency in hertz.
# TYPE node_cpu_frequency_max_hertz gauge
node_cpu_frequency_max_hertz{cpu="0"} 3.4e+09
node_cpu_frequency_max_hertz{cpu="1"} 3.4e+09
# HELP node_cpu_frequency_min_hertz Minimum cpu thread frequency in hertz.
# TYPE node_cpu_frequency_min_hertz gauge
node_cpu_frequency_min_hertz{cpu="0"} 1.6e+09
node_cpu_frequency_min_hertz{cpu="1"} 1.6e+09
# HELP node_cpu_scaling_frequency_hertz Current scaled cpu thread frequency in hertz.
# TYPE node_cpu_scaling_frequency_hertz gauge
node_cpu_scaling_frequency_hertz{cpu="0"} 2.352192e+09
node_cpu_scaling_frequency_hertz{cpu="1"} 2.243048e+09
# HELP node_cpu_scaling_frequency_max_hertz Maximum scaled cpu thread frequency in hertz.
# TYPE node_cpu_scaling_frequency_max_hertz gauge
node_cpu_scaling_frequency_max_hertz{cpu="0"} 3.4e+09
node_cpu_scaling_frequency_max_hertz{cpu="1"} 3.4e+09
# HELP node_cpu_scaling_frequency_min_hertz Minimum scaled cpu thread frequency in hertz.
# TYPE node_cpu_scaling_frequency_min_hertz gauge
node_cpu_scaling_frequency_min_hertz{cpu="0"} 1.6e+09
node_cpu_scaling_frequency_min_hertz{cpu="1"} 1.6e+09
# Linux provides scheduling metrics in /proc/schedstat, which the node exporter uses.
# The node exporter current exposes three of these:
# HELP node_schedstat_running_seconds_total Number of seconds CPU spent running a process.
# TYPE node_schedstat_running_seconds_total counter
node_schedstat_running_seconds_total{cpu="0"} 1.093032217430793e+06
node_schedstat_running_seconds_total{cpu="1"} 1.07527722232456e+06
# HELP node_schedstat_timeslices_total Number of timeslices executed by CPU.
# TYPE node_schedstat_timeslices_total counter
node_schedstat_timeslices_total{cpu="0"} 5.965185464e+09
node_schedstat_timeslices_total{cpu="1"} 5.266658269e+09
# HELP node_schedstat_waiting_seconds_total Number of seconds spent by processing waiting for this CPU.
# TYPE node_schedstat_waiting_seconds_total counter
node_schedstat_waiting_seconds_total{cpu="0"} 217918.365216207
node_schedstat_waiting_seconds_total{cpu="1"} 218559.331226331
Using the group() aggregator in PromQL
If you wanted to count the number of unique values a label has, such as say the number of values the cpu label had in node_cpu_seconds_total per instance the standard pattern is:
count without(cpu) (
count without(mode) (node_cpu_seconds_total)
)
count without(cpu) (
group without(mode) (node_cpu_seconds_total)
)
Network interface metrics from the node exporter
Along with many others, the node exporter exposes network interface metrics.
Network interface metrics have the prefix node_network_ on the node exporter's /metrics, and a device label. These are distinct from the node_netstat_ metrics which are about the kernel's network subsystem in general.
rate(node_network_transmit_errs_total[5m])
/
rate(node_network_transmit_packets_total[5m])
CPU scheduling metrics from the node exporter
CPU frequency scaling metrics from the node exporter
ARP cache metrics from the node exporter
Using the group() aggregator in PromQL
Linux software RAID metrics from the node exporter
Time metric from the node exporter
Using Letsencrypt with the node exporter
Conntrack metrics from the node exporter
Kernel file descriptor metrics from the node exporter
Temperature and hardware monitoring metrics from the node exporter
Network interface metrics from the node exporter
Filesystem metrics from the node exporter
Analyse a metric by kernel version
Mapping iostat to the node exporter’s node_disk_* metrics
Using the textfile collector from a shell script
New Features in Node Exporter 0.16.0
Using group_left to calculate label proportions
Understanding Machine CPU usage
Monitoring directory sizes with the Textfile Collector
I’m a DevOps/SRE/DevSecOps/Cloud Expert passionate about sharing knowledge and experiences. I am working at Cotocus. I blog tech insights at DevOps School, travel stories at Holiday Landmark, stock market tips at Stocks Mantra, health and fitness guidance at My Medic Plus, product reviews at I reviewed , and SEO strategies at Wizbrand.
Please find my social handles as below;
Rajesh Kumar Personal Website
Rajesh Kumar at YOUTUBE
Rajesh Kumar at INSTAGRAM
Rajesh Kumar at X
Rajesh Kumar at FACEBOOK
Rajesh Kumar at LINKEDIN
Rajesh Kumar at PINTEREST
Rajesh Kumar at QUORA
Rajesh Kumar at WIZBRAND